Saturday, March 14, 2009

The Intel® Core™2 processor family

Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Intel 64 provides support for:

  • 64-bit flat virtual address space
  • 64-bit pointers
  • 64-bit wide general purpose registers
  • 64-bit integer support
  • Up to one terabyte (TB) of platform address space


Intel® Core™ i7 processor Extreme Edition
  • 3.20 GHz core speed
  • 8 processing threads with Intel® HT technology
  • 8 MB of Intel® Smart Cache
  • 3 Channels of DDR3 1066 MHz memory


Number Intel® Smart
Cache
Clock
Speed
Intel® Quick Path
Interconnect
Speed
Memory
Type/Speed
Integrated
Memory
Controller
Intel® Hyper-Threading
Technology±
Quad
Core
Intel®
64Φ
45 nm
i7-965 8 MB 3.20 GHz 6.4 GT/s DDR3 800/1066 MHZ 3 Channels, 2 Dimms/Ch 8 Processing Threads


Intel® Core™ i7 processor
  • 2.93 GHz and 2.66 GHz core speed
  • 8 processing threads with Intel® HT technology
  • 8 MB of Intel® Smart Cache
  • 3 Channels of DDR3 1066 MHz memory


Processor Number
Intel® Smart Cache Clock Speed Intel® QuickPath Interconnect Speed DDR3 Speed Integrated Memory Controller Intel® Hyper-Threading Technology Quad-Core
45 nm
i7-940 8 MB 2.93 GHz 4.8 GT/s 800/1066 MHz 3 channels, 2 DIMMs/Ch 8 processing threads
i7-920 8 MB 2.66 GHz 4.8 GT/s 800/1066 MHz 3 channels, 2 DIMMs/Ch 8 processing threads


Intel® Core™2 Extreme processor

  • 12 MB of total L2 cache
  • 1600 MHz front side bus
  • For gaming, digital photography, or video editing
  • Intel® Virtualization Technology
Processor
Number
Cache
Clock Speed
Front
Side
Bus
Cores
(Intel®
VT)◊
Intel®
64◊
Execute
Disable Bit◊
45 nm
QX9775 12 MB L2 3.20 GHz 1600 MHz
4
QX9770 12 MB L2 3.2 GHz 1600 MHz 4
QX9650 12 MB L2 3.00 GHz 1333 MHz 4
65 nm
X6800 4 MB L2 2.93 GHz 1066 MHz 2
QX6850 8 MB L2 3 GHz 1333 MHz 4
QX6800
8 MB L2 2.93 GHz 1066 MHz 4
QX6700 8 MB L2 2.66 GHz 1066 MHz 4


Intel® Core™2 Quad processor
  • Intel® quad-core technology
  • Intel® 64 architecture
Processor
Number
Cache Clock Speed Front Side Bus
45 nm
Q9650 12MB L2 3 GHz 1333 MHz
Q9550S 12MB L2 2.83 GHz 1333 MHz
Q9550 12MB L2 2.83 GHz 1333 MHz
Q9450 12MB L2 2.66 GHz 1333 MHz
Q9400S 6MB L2 2.66 GHz 1333 MHz
Q9400 6MB L2 2.66 GHz 1333 MHz
Q9300 6MB L2 2.50 GHz 1333 MHz
Q9100 12MB L2 2.26 GHz 1066 MHz
Q9000 6 MB L2 2.00 GHz 1066 MHz
Q8300 4MB L2 2.50 GHz 1333 MHz
Q8200S 4MB L2 2.33 GHz 1333 MHz
Q8200 4MB L2 2.33 GHz 1333 MHz
65 nm
Q6700 8MB L2 2.66 GHz 1066 MHz
Q6600 8MB L2 2.40 GHz 1066 MHz


Intel® Core™2 Duo processor
  • Intel® dual-core technology
  • Intel® 64 architecture
Processor
Number
Cache Clock
Speed
Front Sides Bus ..................
Cores (Intel® VT) Intel®
64
45 nm
E8600 6 MB L2 3.33 GHz 1333 MHz
2
E8500 6 MB L2 3.16 GHz 1333 MHz
2
E8400 6 MB L2 3.00 GHz 1333 MHz
2
E8300 6 MB L2 2.83 GHz 1333 MHz
2
E8200 6 MB L2 2.66 GHz 1333 MHz
2
E8190 6 MB L2 2.66 GHz 1333 MHz
2

E7500 3 MB L2 2.93 GHz 1066 MHz
2

E7400 3 MB L2 2.80 GHz 1066 MHz
2

E7300 3 MB L2 2.66 GHz 1066 MHz
2

E7200 3 MB L2 2.53 GHz 1066 MHz
2

65 nm
E6850 4 MB L2 3 GHz 1333 MHz
2
E6750 4 MB L2 2.66 GHz 1333 MHz
2
E6700 4 MB L2 2.66 GHz 1066 MHz
2
E6600 4 MB L2 2.40 GHz 1066 MHz
2
E6550 4 MB L2 2.33 GHz 1333 MHz
2
E6540 4 MB L2 2.33 GHz 1333 MHz
2
E6420 4 MB L2 2.13 GHz 1066 MHz
2
E6400 2 MB L2 2.13 GHz 1066 MHz
2
E6320 4 MB L2 1.86 GHz 1066 MHz
2
E6300 2 MB L2 1.86 GHz 1066 MHz
2
E4600 2 MB L2 2.40 GHz 800 MHz
2

E4500 2 MB L2 2.20 GHz 800 MHz
2

E4400 2 MB L2 2.00 GHz 800 MHz
2

E4300 2 MB L2 1.80 GHz 800 MHz
2


Read More...

A dual core processor

Dual-core refers to a CPU that includes two complete execution cores per physical processor. It combines two processors and their caches and cache controllers onto a single integrated circuit (silicon chip). It is basically two processors, in most cases, residing reside side-by-side on the same die.

In a single-core or traditional processor the CPU is fed strings of instructions it must order, execute, then selectively store in its cache for quick retrieval. When data outside the cache is required, it is retrieved through the system bus from random access memory (RAM) or from storage devices. Accessing these slows down performance to the maximum speed the bus, RAM or storage device will allow, which is far slower than the speed of the CPU. The situation is compounded when multi-tasking. In this case the processor must switch back and forth between two or more sets of data streams and programs. CPU resources are depleted and performance suffers.

Dual-processor, Dual-core, and Multi-core:
Dual-processor (DP) systems are those that contains two separate physical computer processors in the same chassis. In dual-processor systems, the two processors can either be located on the same motherboard or on separate boards.
In a dual-core configuration, an integrated circuit (IC) contains two complete computer processors. Usually, the two identical processors are manufactured so they reside side-by-side on the same die, each with its own path to the system front-side bus.
Multi-core is somewhat of an expansion to dual-core technology and allows for more than two separate processors.

A dual core processor is different from a multi-processor system.
In the latter there are two separate CPUs with their own resources. In the former, resources are shared and the cores reside on the same chip. A multi-processor system is faster than a system with a dual core processor, while a dual core system is faster than a single-core system, all else being equal.

In a dual core processor each core handles incoming data strings simultaneously to improve efficiency. Just as two heads are better than one, so are two hands. Now when one is executing the other can be accessing the system bus or executing its own code.

To utilize a dual core processor, the operating system must be able to recognize multi-threading and the software must have simultaneous multi-threading technology (SMT) written into its code. SMT enables parallel multi-threading wherein the cores are served multi-threaded instructions in parallel. Without SMT the software will only recognize one core. Adobe Photoshop is an example of SMT-aware software. SMT is also used with multi-processor systems common to servers.

A dual-core processor has many advantages especially for those looking to boost their system's multitasking computing power. Complete optimization for the dual-core processor requires both the operating system and applications running on the computer to support a technology called thread-level parallelism, or TLP. Thread-level parallelism is the part of the OS or application that runs multiple threads simultaneously, where threads refer to the part of a program that can execute independently of other parts.

Even without a multithread-enabled application, you will still see benefits of dual-core processors if you are running an OS that supports TLP. For example, if you have Microsoft Windows XP (which supports multithreading), you could have your Internet browser open along with a virus scanner running in the background, while using Windows Media Player to stream your favorite radio station and the dual-core processor will handle the multiple threads of these programs running simultaneously with an increase in performance and efficiency.

Today Windows XP and hundreds of applications already support multithread technology, especially applications that are used for editing and creating music files, videos and graphics because types of programs need to perform operations in parallel.

For the average user the difference in performance will be most noticeable in multi-tasking until more software is SMT aware. Servers running multiple dual core processors will see an appreciable increase in performance.

Multi-core processors are the goal and as technology shrinks, there is more "real-estate" available on the die. In the fall of 2004 Bill Siu of Intel predicted that current accommodating motherboards would be here to stay until 4-core CPUs eventually force a changeover to incorporate a new memory controller that will be required for handling 4 or more cores.

Sources:
http://www.wisegeek.com/what-is-a-dual-core-processor.htm
http://www.webopedia.com/DidYouKnow/Hardware_Software/2005/dual_core.asp

Read More...

Intel® Pentium® processors

Intel® Pentium® processors feature:

Intel® Dual-Core Technology : The Intel dual-core processor consists of two complete execution cores in one physical processor.


Processor
Number
Process Technology Cache Clock
Speed
Front
Side
Bus
Dual-core


E5400 45 nm 2MB L2 2.70 GHz 800 MHz


E5300 45 nm 2M L2 2.60 GHz 800 MHz


E5200 45 nm 2MB L2 2.50 GHz 800 MHz


E2220 65 nm 1MB L2 2.40 GHz 800 MHz


E2200 65 nm 1MB L2 2.20 GHz 800 MHz


E2180 65 nm 1MB L2 2.00 GHz 800 MHz


E2160 65 nm 1MB L2 1.80 GHz 800 MHz


E2140 65 nm 1MB L2 1.60 GHz 800 MHz


T2330 65 nm 1MB L2 1.60 GHz 533 MHz


T2310 65 nm 1MB L2 1.46 GHz 533 MHz


T2130 65 nm 1MB L2 1.86 GHz 533 MHz


T2080 65 nm 1MB L2 1.73 GHz 533 MHz


T2060 65 nm 1MB L2 1.60 GHz 533 MHz


T2370 65 nm 1MB L2 1.73 GHz 533 MHz



Read More...

Friday, March 13, 2009

Linux ဆိုတာ

လူေတြက Linux ဆိုတာကိုပဲ သိၾကတယ္။ ဒါေပမယ့္ Ubuntu လို႕ေျပာလိုက္ရင္ ဘာမွ မသိၾကဘူး။ အဲလိုပဲ Mandriva , Fedora စတာေတြေျပာလည္း မသိၾကပါဘူး။ Ubuntu က Linux လို႕ရွင္းလုိက္ရင္ Fedora က အျခား OS ၾကီးလား ျဖစ္သြားၾကျပန္ေကာ။ အမွန္တုိင္းဆိုရင္ေတာ့


Ubuntu, Fedora, Mandriva စတာေတြက distro ေတြပါ။ Linux kernel ကို အသံုးျပဳထားတဲ့ distro ေတြေပါ့။ ဒါဆို ဘာလို႕ distro ဒီေလာက္ အမ်ားၾကီးျဖစ္ေနရတာလဲ။ ဘယ္ distro ကို သံုးသင့္လဲ။ ဘာေၾကာင့္ အဲဒီ distro ကိုသံုးရလဲ။ ေမးခြန္းေတြက အမ်ားၾကီးပဲဗ်။ Linux ကို ေလ့လာမယ္လို႕ ေၾကြးေၾကာ္လုိက္တာနဲ႕ မ်ားျပားလွတဲ့ distro ေတြထဲမွာ ဘယ္ distro ကိုေလ့လာရမွန္းမသိ ျဖစ္တတ္ၾကပါတယ္။ Linux ကို ေလ့လာမယ္လူေတြအေနနဲ႕ distro တစ္ုခကို ေရြးခ်ယ္ရေတာ့မယ္။ အဲလိုေရြးခ်ယ္မယ္ဆိုရင္
၁။ သင့္ skill level
၂။ အသံုးျပဳမယ့္ ရည္ရြယ္ခ်က္
၃။ package management system
စတာေတြကို ၾကည့္ျပီး ေရြးခ်ယ္ရတာေပါ့။

သင့္ skill level

Linux Distro ေတြအကုန္လံုးဟာ skill level တစ္ခုထဲအတြက္ ထုတ္ထားတာမဟုတ္ပါဘူး။ linux ကိုနည္းနည္း သံုးဖူးတဲ့လူေတြ ရိွတယ္။ ၾကာၾကာသံုးဖူးတဲ့လူေတြရိွတယ္။ အျမဲ သံုးေနတဲ့လူေတြရိွတယ္။ အဲလိုကြဲျပားျခားနားၾကတဲ့အတြက္ သင္ဟာ Linux ကို ဘယ္ေလာက္ထိ ရင္းႏီွးကၽြမ္းဝင္လဲေပၚမွာ မူတည္ျပီးေတာ့ distro ကိုေရြးခ်ယ္ရပါမယ္။ စသံုးတဲ့ လူေတြအတြက္ Ubuntu က ျပဳလုပ္ထားပါတယ္။ အခုမွ စသံုးမယ့္လူေတြကေတာ့ Ubuntu ကို စသံုးဖို႕အသင့္ေတာ္ဆံုးပဲ။ အျခား distro ေတြျဖစ္တဲ့ Gentoo သို႕မဟုတ္ Slackware စတာေတြက Ubuntu နဲ႕ ယွဥ္လိုက္ရင္ သံုးရတာ နည္းနည္းပိုခက္တယ္။ Ubuntu က အရိုးရွင္းဆံုးနဲ႕ အလြယ္ကူဆံုးျဖစ္ျပီး user control ပိုင္းေတြ user supporting ပိုင္းေတြမွာ ေကာင္းမြန္ပါတယ္။ advanced user ေတြကေတာ့ ကိုယ့္နည္းလမ္းနဲ႕ ကိုယ္ခ်ဲ႕ထြင္ျပီး သံုးခ်င္ၾကတယ္။

အရမ္းလြယ္ကူျပီး အဆင့္ဆင့္ သြားေနရတာေတြကို မၾကိဳက္တာေတြရိွတတ္ပါတယ္။ Linux နဲ႕ ရင္းႏီွးကၽြမး္ဝင္ျပီးသားလူေတြ အေနနဲ႕မုိ႕သာ Ubuntu ကို ေရြးခ်ယ္ၾကမွာပါ။ စသံုးတဲ့ user အေနနဲ႕ ဘာမွန္းမသိပဲ ေရြးခ်ယ္တဲ့အခါ Gentoo ကိုသံုးရင္ ပိုၾကိဳက္ေကာင္းၾကိဳက္သြားမွာပါ။ တနည္းေျပာရင္ အသံုးျပဳလာတာ ၾကာလာတာနဲ႕အမွ် Linux ကို ရင္းႏီွးကၽြမ္းဝင္လာမွာပါ။ ဒါေၾကာင့္ distro ကို ေရြးခ်ယ္ရမွာ Linux နဲ႕ ဘယ္ေလာက္ရင္းႏီွးဘူးလဲေပၚမွာ မူတည္ျပီးေတာ့ ေရြးခ်ယ္ၾကတာပဲ။ Windows သံုးရတာ familiar ျဖစ္ေနျပီ ဆိုတဲ့သူေတြကေတာ့ Mandriva ကိုစမ္းသံုးၾကည့္ုလို႕ရတယ္။ mandriva ဟာ windows user ေတြအတြက္ ရည္ရြယ္ျပီးေတာ့ ထုတ္ထားတာပါ။

ဘယ္လိုပဲ ျဖစ္ျဖစ္ Linux ကို စသံုးျပီဆိုတာနဲ႕ ထူးျခားတဲ့အေတြ႕အၾကံဳေတြရသြားမွာပါ။ သံုးရင္းကေန အျမဲ ဆက္သံုးျဖစ္သြားရင္ သင့္ကိုယ္သင္ expert တစ္ေယာက္လုိ႕ ထင္ေကာင္းထင္လာလိမ့္မယ္။ ဒါေၾကာင့္ Linux ကို စမ္းသံုးၾကည့္တာေတာ့ မမွားဘူးေပါ့။

အသံုးျပဳမယ့္ ရည္ရြယ္ခ်က္

Linux ကို ကၽြန္ေတာ္တုိ႕ေတြဟာ ရည္ရြယ္ခ်က္ အမ်ဳိးမ်ဳိးနဲ႕ အသံုးျပဳၾကတယ္။ အသံုးျပဳတဲ့ ရည္ရြယ္ခ်က္ေပၚမူတည္ျပီး distro ေတြလည္း ကြဲျပားကုန္တယ္။ Mandriva , OpenSuse, Ubuntu စတဲ့ distro အခ်ဳိ႕ဟာ Desktop ေတြအတြက္ ရည္ရြယ္ျပီး ျပင္ဆင္ျပီး ထုတ္လုပ္ထားၾကတယ္။ အျခား distro ေတြကေတာ့ ( Cents OS လိုမ်ဳိးေပါ့ ) server ေတြအတြက္ ရည္ရြယ္ျပီး ထုတ္လုပ္ၾကတယ္။ အနည္းငယ္ေတာ့ distro ( Debian လိုမ်ဳိး ) distro ေတြကေတာ့ user ေတြ configure လုပ္တဲ့ေပၚမွာမူတည္ျပီးေတာ့ အားလံုးနဲ႕ အဆင္ေျပေအာင္ ထုတ္လုပ္ၾကတယ္။

Desktop-orient နဲ႕ server-orient distro ေတြက အေရးေတာ့မၾကီးပါဘူး။ ဘာျဖစ္လုိ႕လည္းဆိုေတာ့ သင္ကိုယ္တိုင္ လိုအပ္တဲ့ function ေတြကို LINUX မွာ ထည့္သြင္းႏိုင္လုိ႕ပါ။ ဒါေပမယ့္ အဲဒီလိုမ်ဳိးထည့္သြင္းဖို႕က သာမာန္ user တစ္ေယာက္အေနနဲ႕ေတာ့ သိပ္ေတာ့လြယ္လွတာမဟုတ္ဘူးဗ်။ အခ်ဳိ႕ေတြကလည္း server ေကာ desktop ေကာ ႏွစ္ခုလံုး ကို ထည့္သြင္းျပီး အသံုးျပဳၾကတာေတြလည္း ရိွၾကတယ္။

Distro အမ်ားစုကေတာ့ graphic driver ေတြကို သိပ္မသိၾကပါဘူး။ ဒါေပမယ့္ ကၽြန္ေတာ္တို႕ေတြအေနနဲ႕ online ရိွတာနဲ႕ အလြယ္တကူသြင္းလို႕ရတယ္ေလ။ server version ေတြဆိုရင္ေတာ့ GUI ပိုင္းက သိပ္မလိုဘူးေပါ့။ အမ်ားအားျဖင့္ server version အတြက္ဆိုရင္ command mode နဲ႕လာၾကတာေတြလည္း ရိွၾကတယ္။

တကယ္လို႕ သင္က server version အတြက္ဆိုရင္ေတာ့ Cents , Debian ,SME Server စတဲ့တစ္ခုခုကို ေရြးလို႕ရတယ္။ Desktop ပိုင္းပဲဆိုရင္ေတာ့ OpenSuse, Ubuntu, Feodra, Mandriva စတာေတြ ေရြးလို႕ရတယ္။ တကယ္လုိ႕ သင္က hybrid သံုးခ်င္ရင္ေတာ့ Package Manager ေတြကေန တဆင့္ သြင္းရေတာ့မွာေပါ့။

Package management

ကၽြန္ေတာ္တို႕ေတြ windows မွာဆိုရင္ေတာ့ setup.exe နဲ႕သြင္းရတယ္ေလ။ ဒါေပမယ့္ Linux မွာေတာ့ package ေတြနဲ႕ သြင္းရတာျဖစ္သြားျပီ။ package ေတြကို လြယ္လြယ္ကူကူသြင္းလို႕ရေအာင္ package manager ေတြက ကူညီေပးတယ္။ Package ေတြကလည္း distro ေတြေပၚမွာ မူတည္ျပီး ကြဲျပားၾကတယ္။

အရင္ကဆို package ေတြကို သြင္းရတာ မလြယ္ကူပါဘူး။ ေနာက္ပိုင္းမွာေတာ့ package manager ေတြေပၚလာတဲ့အတြက္ သြင္းရတာေတြ ျပန္ျဖဳတ္ရတာေတြ လြယ္ကူလာပါတယ္။

Package management with Mandriva (urpmi)
Distro ေတြေပၚမွာမူတည္ျပီး package ေတြကလည္း ကြာသြားတယ္။ အဲဒီအတြက္လည္း သြင္းရေအာင္ လြယ္ကူေအာင္ distro ေတြက သူတို႕ရဲ႕ package manager ေတြကို ထည့္သြင္းေပးထားတယ္။ package အမ်ဳိးအစားေတြကေတာ့



Tool Name Used By
Advanced Packaging Tool (apt-get) Debian, Ubuntu (and its variants), gOS, Linux Mint, Sidux, Knoppix
YUM Fedora, CentOS/Red Hat Enterprise Linux
Yast OpenSUSE
Portage Gentoo
Urpmi Mandriva

Linux ဟာ windows မွာလို အေခြေတြဝယ္ေနစရာမလုိဘူး။ software ေတြအမ်ားၾကီး free ရေနပါတယ္။ package manager ကေန အသင့္ေရြးျပီး သြင္းရံုပဲ။ လြယ္လည္းလြယ္တယ္။ crack လုပ္စရာေတြ မလိုဘူး။ ေငြလည္းမကုန္ဘူး။ ဒါေပမယ့္ internet ေတာ့ရိွဖုိ႕လိုပါတယ္။



http://www.saturngod.net/?p=1080#more-1080
by Saturngod

Read More...